Simulation of synaptic depression, posttetanic potentiation, and presynaptic facilitation of synaptic potentials from sensory neurons mediating gill-withdrawal reflex in Aplysia.
نویسندگان
چکیده
The defensive gill-withdrawal reflex in Aplysia has proven to be an attractive system for analyzing the neural mechanisms underlying simple forms of learning such as habituation, sensitization, and classic conditioning. Previous studies have shown that habituation is associated with synaptic depression and sensitization with presynaptic facilitation of transmitter release from sensory neurons mediating the reflex. The synaptic depression, in turn, is associated with a decrease in Ca2+ currents in the sensory neurons, whereas presynaptic facilitation with increased Ca2+ currents produced indirectly by a decrease in a novel serotonergic sensitive K+ current. The present work represents an initial quantitative examination of the extent to which these mechanisms account for each of these types of synaptic plasticity. To address these issues a lumped parameter mathematical model of the sensory neuron release process was constructed. Major components of this model include Ca2+-channel inactivation, Ca2+-mediated neurotransmitter release and mobilization, and readily releasable and upstream feeding pools of neurotransmitter. In the model, release of neurotransmitter has a linear function of Ca2+ concentration and is not affected directly by residual Ca2+. The model not only simulates the data of synaptic depression and recovery from depression, but also qualitatively predicts other features of neurotransmitter release that it was not designed to fit. These include features of synaptic depression with high and low levels of transmitter release, posttetanic potentiation, a steep relationship between action potential duration and transmitter release, enhanced release produced by broadening the sensory neuron action potential (presynaptic facilitation), and dramatic synaptic depression with two closely spaced tetraethylammonium (TEA) spikes. The model cannot account fully for synaptic depression with empirically observed somatic Ca2+-current kinetics. Rather a large component of synaptic depression is due to reduction to the pools of releasable neurotransmitter (depletion). In the model when spike durations are greater than 15-20 ms, spike broadening produces little facilitation. However, when spike durations are more physiological, spike broadening leads to enhanced transmitter release.
منابع مشابه
Mechanoafferent neurons innervating tail of Aplysia. II. Modulation by sensitizing stimulation.
The tail-withdrawal reflex of Aplysia can be sensitized by weak stimulation of a site outside the site used to test the reflex or by repeatedly stimulating the test site itself. The sensitization of tail-withdrawal responses is associated with enhanced activation of the tail motor neurons and heterosynaptic facilitation of the monosynaptic connections between the tail sensory neurons and tail m...
متن کاملIdentified serotonergic neurons LCB1 and RCB1 in the cerebral ganglia of Aplysia produce presynaptic facilitation of siphon sensory neurons.
Several lines of evidence suggest that 5-HT plays a significant role in presynaptic facilitation of the siphon sensory cells contributing to dishabituation and sensitization of the gill- and siphon-withdrawal reflex in Aplysia. Most recently, Glanzman et al. (1989) found that treatment with the 5-HT neurotoxin, 5,7-DHT markedly reduced both synaptic facilitation and behavioral dishabituation. T...
متن کاملSynaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP.
The neural changes accompanying sensitization of the gill-withdrawal reflex in Aplysia are associated with presynaptic facilitation at monosynaptic connections between sensory neurons and motor cells. To analyze the molecular mechanisms underlying the facilitation, the pharmacological actions of serotonin, octopamine, and dopamine were examined. Only serotonin enhanced synaptic transmission bet...
متن کاملSynaptic Plasticity in vifro: Cell Culture Aplysia Neurons Mediating Short-Term Habituation and Sensitization Identified
The gill withdrawal reflex of the marine mollusk, Ap&u californica, shows habituation and sensitization, two simple forms of learning. In order to extend the cellular studies on synaptic plasticity underlying the changes in the reflex behavior, and to explore further the development of synaptic plasticity during synapse formation, we have sought to establish the neural circuit of the gill withd...
متن کاملReceptive fields and properties of a new cluster of mechanoreceptor neurons innervating the mantle region and the branchial cavity of the marine mollusk Aplysia californica.
The rostral LE cluster (rLE) is a new set of mechanoreceptor neurons of the abdominal ganglion innervating the mantle area, the branchial cavity, the gill and the siphon of the marine mollusk Aplysia californica Cooper. We have compared the organization of rLE cell receptive fields with that of three other clusters of sensory neurons in the abdominal ganglion (LE, RE and RF) that we have reanal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 53 3 شماره
صفحات -
تاریخ انتشار 1985